Integer Convex Maximization

نویسنده

  • J. De Loera
چکیده

We show that an important broad class of integer programming problems in variable dimension with convex objective functions is solvable in polynomial time, and discuss various applications including to multiway transportation problems, packing problems and partitioning problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Submodular Function Minimization and Maximization in Discrete Convex Analysis

This paper sheds a new light on submodular function minimization and maximization from the viewpoint of discrete convex analysis. L-convex functions and M-concave functions constitute subclasses of submodular functions on an integer interval. Whereas L-convex functions can be minimized efficiently on the basis of submodular (set) function minimization algorithms, M-concave functions are identif...

متن کامل

Convex integer maximization via Graver bases

We present a new algebraic algorithmic scheme to solve convex integer maximization problems of the following form, where c is a convex function on R and w1x, . . . , wdx are linear forms on R, max {c(w1x, . . . , wdx) : Ax = b, x ∈ N} . This method works for arbitrary input data A, b, d, w1, . . . , wd, c. Moreover, for fixed d and several important classes of programs in variable dimension, we...

متن کامل

Maximum Entropy Gaussian Approximations for the Number of Integer Points and Volumes of Polytopes

We describe a maximum entropy approach for computing volumes and counting integer points in polyhedra. To estimate the number of points from a particular set X ⊂ Rn in a polyhedron P ⊂ Rn, by solving a certain entropy maximization problem, we construct a probability distribution on the set X such that a) the probability mass function is constant on the set P ∩X and b) the expectation of the dis...

متن کامل

Maximum Entropy Gaussian Approximation for the Number of Integer Points and Volumes of Polytopes

We describe a maximum entropy approach for computing volumes and counting integer points in polyhedra. To estimate the number of points from a particular set X ⊂ Rn in a polyhedron P ⊂ Rn we construct a probability distribution on the set X by solving a certain entropy maximization problem such that a) the probability mass function is constant on the set P ∩X and b) the expectation of the distr...

متن کامل

Exact solution method to solve large scale integer quadratic multidimensional knapsack problems

In this paper we develop a branch-and-bound algorithm for solving a particular integer quadratic multi-knapsack problem. The problem we study is defined as the maximization of a concave separable quadratic objective function over a convex set of linear constraints and bounded integer variables. Our exact solution method is based on the computation of an upper bound and also includes pre-procedu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006